
CS 4530: Fundamentals of Software Engineering

Module 16A: Dependency Management

Adeel Bhutta and Mitch Wand (with material by Donald Pinckney)

Khoury College of Computer Sciences

© 2024, released under CC BY-SA

1

http://creativecommons.org/licenses/by-sa/4.0/

Learning Objectives for this Module

• By the end of this module, you should be able to:
• Explain why you need dependencies

• Explain the major risks of dependencies

• Explain the principles of semantic versioning

• Explain what a package manager does

• Understand that different package managers may solve
dependencies differently

Software isn't written in a vacuum

• Writing a JS app?
• you depend on: React, 100s of small JS packages, Node,

V8, …

• Writing ML code in Python?
• You depend on: PyTorch, Numpy, CUDA, C libraries,

compilers, …

• And so on for nearly all software

3

Our context:

• You are writing an application in JS/TS

• You need some services

• Is there a dependency you can use, or should you
build your own?

4

Risks of Dependencies

• You are reliant on the designer's choices
• (but: they may have done a better job than you would)

• Security risks

• Upstream risks (transitive dependencies)

• May need multiple copies of some dependencies

• How to keep them all up to date??

5

Dependency Management Isn't Easy

• Too many dependencies to manage manually
• Often 100+ for JavaScript projects when considering

transitive dependencies

• Too frequent dependency updates to apply
manually
• Even though they may be very important, e.g. critical

security patches!

• Dependency updates can’t be done in isolation: you
may have to update other dependencies to match

6

We can control the direct dependencies, but
not the transitive dependencies

• We declare our immediate dependencies in a
manifest: eg package.json

• But we don't/can't control our dependencies'
dependencies

7

What the *#*!?

8

$ npm install
npm WARN deprecated inflight@1.0.6: This module is not supported, and leaks memory. Do
not use it. Check out lru-cache if you want a good and tested way to coalesce async
requests by a key value, which is much more comprehensive and powerful.
npm WARN deprecated @humanwhocodes/config-array@0.13.0: Use @eslint/config-array instead
npm WARN deprecated rimraf@3.0.2: Rimraf versions prior to v4 are no longer supported
npm WARN deprecated glob@7.2.3: Glob versions prior to v9 are no longer supported
npm WARN deprecated glob@7.2.3: Glob versions prior to v9 are no longer supported
npm WARN deprecated glob@7.2.3: Glob versions prior to v9 are no longer supported
npm WARN deprecated glob@7.2.3: Glob versions prior to v9 are no longer supported
npm WARN deprecated glob@7.2.3: Glob versions prior to v9 are no longer supported
npm WARN deprecated @humanwhocodes/object-schema@2.0.3: Use @eslint/object-schema instead
npm WARN deprecated eslint@8.57.1: This version is no longer supported. Please see
https://eslint.org/version-support for other options.

added 750 packages, and audited 751 packages in 1m

Package Managers Manage the Transitive
Dependencies

• NPM: 3 million+ packages

• Complex graph of dependencies

• 20TB+ of package code

• Fairly rich dependency specification language

9

Package Managers Manage the Transitive
Dependencies

10

Package
Manager

Install
Packages

Install
Request

minimatch
???

minimatch

v3.1.0

glob
v7.2.3

3.1.0

3.1.2

3.2.0

@babel/cli

"glob": ">=7.2.0" "minimatch": ">=3.1.0"

What Can Go Wrong?

• Dependency solving can fail
• Conflicting constraints

• Weaknesses in solving algorithms (old Pip, current
NPM)

11

Package
Manager

Install
Packages

Install
Request

What Can Go Wrong?

• Dependency solving can fail
• Conflicting constraints

• Weaknesses in solving algorithms (old Pip, current
NPM)

• Dependency solutions can induce code failures
• Build failures, runtime crashes, runtime bugs, etc.

12

Package
Manager

Install
Packages

Install
Request

What Can Go Wrong?

• Dependency solving can fail
• Conflicting constraints
• Weaknesses in solving algorithms (old Pip, current

NPM)

• Dependency solutions can induce code failures
• Build failures, runtime crashes, runtime bugs, etc.

• Low-quality dependency solutions
• Security vulnerabilities
• Large code size
• Old versions of packages

13

Package
Manager

Install
Packages

Install
Request

Semantic Versioning Can Help Keep Track of
Breaking Changes

• Given a version number MAJOR.MINOR.PATCH,
increment the:
• MAJOR version when you make incompatible API

changes

• MINOR version when you add functionality in a
backward compatible manner

• PATCH version when you make backward compatible
bug fixes

• Additional labels for pre-release and build metadata are
available as extensions to the MAJOR.MINOR.PATCH
format.

14

https://semver.org/

https://semver.org/

Semantic Versioning takes effort

"It’s hard to follow semantic versioning—it takes
significant effort to make backward-compatible
changes, backward-compatible bug fixes, and to
backport security patches to old release numbers.
However, following semantic versioning is the best
way to spread joy to your downstream users."

15

https://semver.org/

https://semver.org/

No
Effect

Intro Vuln

Patch Vuln

Semver Increment Security Effect

Characterizing Updates

16

1.0.0 1.0.1

1.0.0 1.1.0

Minor

1.0.0 2.0.0

Major

Bug (Patch)

Most Packages Have Out-of-Date
Dependencies

17

2

17% of packages
have fully up-to-date

dependencies

50% of packages
have 31% or more of

their dependencies out-
of-date

Most Packages Have Out-of-Date
Dependencies

18

Semantic Versioning starts with your
package.json

19

Developers Rarely Distinguish Bug vs. Minor
Updates

20

Most constraints
are either exact or

minor-flexible

Probably because npm --save defaults to
"^"

21

Implications For Developers & Researchers

• Consider using ~ constraints (bug updates) instead
of ^ (bug + minor updates)
• At the cost of technical lag

• And forcing the technical lag on clients

• Alternatively, allow developers to specify
preferences outside of constraints
• what would that even mean?

23

What is dependency solving?

24

NPM

"dependencies": {
 "commander": "^2.8.1”,
 "convert-source-map": "^1.1.0",
 "fs-readdir-recursive": "^1.1.0",
 "glob": "^7.0.0",
 "lodash": "^4.17.10",
 "mkdirp": "^0.5.1",
 "output-file-sync": "^2.0.0",
 "slash": "^2.0.0",
 "source-map": "^0.5.0”
}

...

Consider the solution space

25

"dependencies": {
 "commander": "^2.8.1”,
 "convert-source-map": "^1.1.0",
 "fs-readdir-recursive": "^1.1.0",
 "glob": "^7.0.0",
 "lodash": "^4.17.10",
 "mkdirp": "^0.5.1",
 "output-file-sync": "^2.0.0",
 "slash": "^2.0.0",
 "source-map": "^0.5.0”
}

{"commander" @ "^2.8.1”,
 "convert-source-map": @ "^1.1.1",
 ...
}

{"commander" @ "^2.8.1”,
 "convert-source-map": @ "^2.1.1",
 ...
}

Versions, Constraints, and Constraint Semantics

26

Does version v
satisfy

constraint c?

Are Multiple Versions of a Package Allowed?

• NPM: Yes

• PIP: No

• Cargo: Partially

27 27

...

minimatch
v3.2.0 minimatch

v3.1.2

If multiple versions are allowed, which ones
are consistent with each other?

28 28

...

minimatch
v3.2.0 minimatch

v3.1.2

Different package
managers may allow
different
combinations

Newer

Smaller

Duplicate
Dependencies

If there are many possible solutions, which
one should we choose?

29

"dependencies": {
 "commander": "^2.8.1”,
 "convert-source-map": "^1.1.0",
 "fs-readdir-recursive": "^1.1.0",
 "glob": "^7.0.0",
 "lodash": "^4.17.10",
 "mkdirp": "^0.5.1",
 "output-file-sync": "^2.0.0",
 "slash": "^2.0.0",
 "source-map": "^0.5.0”
}

Not a solution

So this is an optimization problem!

Minimize # of Dependencies Prefer Newer Versions

30

Different package managers may
have different optimization goals

Tunable knobs for a package manager

31

Luckily, most projects are robust to different
dependency solutions

32

Learning Objectives for this Module

• You should now be able to:
• Explain why you need dependencies

• Explain the major risks of dependencies

• Explain the principles of semantic versioning

• Explain what a package manager does

• Understand that different package managers may solve
dependencies differently

	Module 16W Dependency Management
	CS 4530: Fundamentals of Software EngineeringModule 16A: Dependency Management
	Learning Objectives for this Module
	Software isn't written in a vacuum
	Our context:
	Risks of Dependencies
	Dependency Management Isn't Easy
	We can control the direct dependencies, but not the transitive dependencies
	What the *#*!?
	Package Managers Manage the Transitive Dependencies
	Package Managers Manage the Transitive Dependencies
	What Can Go Wrong?
	What Can Go Wrong?
	What Can Go Wrong?
	Semantic Versioning Can Help Keep Track of Breaking Changes
	Semantic Versioning takes effort
	Characterizing Updates
	Most Packages Have Out-of-Date Dependencies
	Most Packages Have Out-of-Date Dependencies
	Semantic Versioning starts with your package.json
	Developers Rarely Distinguish Bug vs. Minor Updates
	Probably because npm --save defaults to "^"
	Implications For Developers & Researchers
	What is dependency solving?
	Consider the solution space
	Versions, Constraints, and Constraint Semantics
	Are Multiple Versions of a Package Allowed?
	If multiple versions are allowed, which ones are consistent with each other?
	If there are many possible solutions, which one should we choose?
	So this is an optimization problem!
	Tunable knobs for a package manager
	Luckily, most projects are robust to different dependency solutions
	Learning Objectives for this Module

