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Learning Objectives for this Module

• By the end of this module, you should be able to:
• Explain why you need dependencies

• Explain the major risks of dependencies

• Explain the principles of semantic versioning

• Explain what a package manager does

• Understand that different package managers may solve 
dependencies differently



Software isn't written in a vacuum

• Writing a JS app?
• you depend on: React, 100s of small JS packages, Node, 

V8, …

• Writing ML code in Python?
• You depend on: PyTorch, Numpy, CUDA, C libraries, 

compilers, …

• And so on for nearly all software
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Our context: 

• You are writing an application in JS/TS

• You need some services

• Is there a dependency you can use, or should you 
build your own?
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Risks of Dependencies

• You are reliant on the designer's choices
• (but: they may have done a better job than you would)

• Security risks

• Upstream risks (transitive dependencies)

• May need multiple copies of some dependencies

• How to keep them all up to date??
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Dependency Management Isn't Easy

• Too many dependencies to manage manually
• Often 100+ for JavaScript projects when considering 

transitive dependencies

• Too frequent dependency updates to apply 
manually
• Even though they may be very important, e.g. critical 

security patches!

• Dependency updates can’t be done in isolation: you 
may have to update other dependencies to match
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We can control the direct dependencies, but 
not the transitive dependencies

• We declare our immediate dependencies in a 
manifest:  eg package.json

• But we don't/can't control our dependencies' 
dependencies
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What the *#*!?
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$ npm install
npm WARN deprecated inflight@1.0.6: This module is not supported, and leaks memory. Do 
not use it. Check out lru-cache if you want a good and tested way to coalesce async 
requests by a key value, which is much more comprehensive and powerful.
npm WARN deprecated @humanwhocodes/config-array@0.13.0: Use @eslint/config-array instead
npm WARN deprecated rimraf@3.0.2: Rimraf versions prior to v4 are no longer supported
npm WARN deprecated glob@7.2.3: Glob versions prior to v9 are no longer supported
npm WARN deprecated glob@7.2.3: Glob versions prior to v9 are no longer supported
npm WARN deprecated glob@7.2.3: Glob versions prior to v9 are no longer supported
npm WARN deprecated glob@7.2.3: Glob versions prior to v9 are no longer supported
npm WARN deprecated glob@7.2.3: Glob versions prior to v9 are no longer supported
npm WARN deprecated @humanwhocodes/object-schema@2.0.3: Use @eslint/object-schema instead
npm WARN deprecated eslint@8.57.1: This version is no longer supported. Please see 
https://eslint.org/version-support for other options.

added 750 packages, and audited 751 packages in 1m



Package Managers Manage the Transitive 
Dependencies

• NPM: 3 million+ packages

• Complex graph of dependencies

• 20TB+ of package code

• Fairly rich dependency specification language
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Package Managers Manage the Transitive 
Dependencies
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Package 
Manager

Install 
Packages

Install 
Request

minimatch
???

minimatch

v3.1.0

glob
v7.2.3

3.1.0

3.1.2

3.2.0

@babel/cli

"glob": ">=7.2.0" "minimatch": ">=3.1.0"



What Can Go Wrong?

• Dependency solving can fail
• Conflicting constraints

• Weaknesses in solving algorithms (old Pip, current 
NPM)
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What Can Go Wrong?

• Dependency solving can fail
• Conflicting constraints

• Weaknesses in solving algorithms (old Pip, current 
NPM)

• Dependency solutions can induce code failures
• Build failures, runtime crashes, runtime bugs, etc.
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What Can Go Wrong?

• Dependency solving can fail
• Conflicting constraints
• Weaknesses in solving algorithms (old Pip, current 

NPM)

• Dependency solutions can induce code failures
• Build failures, runtime crashes, runtime bugs, etc.

• Low-quality dependency solutions
• Security vulnerabilities
• Large code size
• Old versions of packages
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Semantic Versioning Can Help Keep Track of 
Breaking Changes

• Given a version number MAJOR.MINOR.PATCH, 
increment the:
• MAJOR version when you make incompatible API 

changes

• MINOR version when you add functionality in a 
backward compatible manner

• PATCH version when you make backward compatible 
bug fixes

• Additional labels for pre-release and build metadata are 
available as extensions to the MAJOR.MINOR.PATCH 
format.
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Semantic Versioning takes effort

"It’s hard to follow semantic versioning—it takes 
significant effort to make backward-compatible 
changes, backward-compatible bug fixes, and to 
backport security patches to old release numbers. 
However, following semantic versioning is the best 
way to spread joy to your downstream users."
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No 
Effect

Intro Vuln

Patch Vuln

Semver Increment Security Effect

Characterizing Updates
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1.0.0 1.0.1

1.0.0 1.1.0

Minor

1.0.0 2.0.0

Major

Bug (Patch)



Most Packages Have Out-of-Date 
Dependencies
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17% of packages
have fully up-to-date 

dependencies

50% of packages
have 31% or more of 

their dependencies out-
of-date

Most Packages Have Out-of-Date 
Dependencies
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Semantic Versioning starts with your 
package.json
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Developers Rarely Distinguish Bug vs. Minor 
Updates
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Most constraints
are either exact or 

minor-flexible



Probably because npm --save defaults to 
"^"  
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Implications For Developers & Researchers

• Consider using ~ constraints (bug updates) instead 
of ^ (bug + minor updates)
• At the cost of technical lag

• And forcing the technical lag on clients

• Alternatively, allow developers to specify 
preferences outside of constraints
• what would that even mean? 
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What is dependency solving?
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NPM

"dependencies": {
  "commander": "^2.8.1”,
  "convert-source-map": "^1.1.0",
  "fs-readdir-recursive": "^1.1.0",
  "glob": "^7.0.0",
  "lodash": "^4.17.10",
  "mkdirp": "^0.5.1",
  "output-file-sync": "^2.0.0", 
  "slash": "^2.0.0",
  "source-map": "^0.5.0”
}

...



Consider the solution space
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"dependencies": {
  "commander": "^2.8.1”,
  "convert-source-map": "^1.1.0",
  "fs-readdir-recursive": "^1.1.0",
  "glob": "^7.0.0",
  "lodash": "^4.17.10",
  "mkdirp": "^0.5.1",
  "output-file-sync": "^2.0.0", 
  "slash": "^2.0.0",
  "source-map": "^0.5.0”
}

{"commander" @ "^2.8.1”,
 "convert-source-map": @ "^1.1.1",
  ...
}

{"commander" @ "^2.8.1”,
 "convert-source-map": @ "^2.1.1",
  ...
}



Versions, Constraints, and Constraint Semantics
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Does version v 
satisfy 

constraint c?



Are Multiple Versions of a Package Allowed?

• NPM: Yes

• PIP: No

• Cargo: Partially
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...

minimatch
v3.2.0 minimatch

v3.1.2



If multiple versions are allowed, which ones 
are consistent with each other?
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...

minimatch
v3.2.0 minimatch

v3.1.2

Different package 
managers may allow 
different 
combinations



Newer

Smaller

Duplicate 
Dependencies

If there are many possible solutions, which 
one should we choose?
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"dependencies": {
  "commander": "^2.8.1”,
  "convert-source-map": "^1.1.0",
  "fs-readdir-recursive": "^1.1.0",
  "glob": "^7.0.0",
  "lodash": "^4.17.10",
  "mkdirp": "^0.5.1",
  "output-file-sync": "^2.0.0", 
  "slash": "^2.0.0",
  "source-map": "^0.5.0”
}

Not a solution



So this is an optimization problem!

Minimize # of Dependencies Prefer Newer Versions
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Different package managers may 
have different optimization goals



Tunable knobs for a package manager
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Luckily, most projects are robust to different 
dependency solutions
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Learning Objectives for this Module

• You should now be able to:
• Explain why you need dependencies

• Explain the major risks of dependencies

• Explain the principles of semantic versioning

• Explain what a package manager does

• Understand that different package managers may solve 
dependencies differently
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